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1 Parameter estimation for the Mix2 model

1.1 Derivation of the EM update formulas

The Expectation Maximization (EM) algorithm [1] increases the likelihood L(R|θ) of a data set R under a model
p(R|θ) by maximizing, or more generally increasing, the auxiliary function

Q(θ′|θ) = EZ|R,θ(log p(R, z|θ′)) (1)

Here, θ is the current parameter set of the model p(R|θ) and θ′ is the new parameter set that needs to be
optimized. In addition, Z = (zr)r∈R is a sequence of random hidden variables zr and, hence, the expression on
the right hand side of (1) is the expected value of log p(R, z|θ′), where z is one realization of Z, with respect
to the random variable Z given R and θ. The hidden variables in the Mix2 model are the transcript variable,
t = i, and the mixture variable, b = j.

A necessary condition for the maximization of Q(θ′|θ) is that the gradient of Q(θ′|θ) equals zero, i.e.

∂

∂θ′
Q(θ′|θ) = 0 (2)

For the Mix2 model this means that
∂

∂αi

Q(θ′|θ) = 0 (3)

and
∂

∂βkj

Q(θ′|θ) = 0 (4)

where i is the index of transcript t = i and k is the index of group g = k. As usual, the update formula of the
relative abundances αi is given by

α
(n+1)
i =

1

|R|

∑

r

p(n) (t = i|r) (5)

where α
(n+1)
i and p(n)(t = i|r) are the relative abundance and posterior probability after the n+ 1-th and n-th

iteration of the EM algorithm. In addition to (4), the βkj have to satisfy the constraint

M
∑

j=1

βkj = 1 (6)

where M is the number of mixture components. This constraint can be enforced with the Lagrange method.
Taking the derivative with respect to βkj leads to

∑

r∈R

p(g = k, b = j|r) + βkjλ = 0 (7)

which after some rearrangement results in

β
(n+1)
kj =

∑

r p
(n) (g = k, b = j|r)

∑

r p
(n) (g = k|r)

(8)

where, as previously, β
(n+1)
kj and p(n)(·) are the mixture components and posterior probabilities after the n+1-th

and after the n-th iteration, respectively. The posterior probabilities in (8) are given by

p(n)(g = k, b = j|r) =
∑

i∈k

p(n)(t = i, b = j|r) (9)

and
p(n)(g = k|r) =

∑

i∈k

p(n)(t = i|r) (10)

where the sums in (9) and (10) extend over all transcripts t = i in group g = k and the posteriors on the
right-hand side of these equations can be derived according to Bayes formula as follows

p(n)(t = i, b = j|r) =
α
(n)
i β

(n)
ij p(r|t = i, b = j)

∑

ij α
(n)
i β

(n)
ij p(r|t = i, b = j)

(11)

2



and

p(n)(t = i|r) =

∑

j α
(n)
i β

(n)
ij p(r|t = i, b = j)

∑

ij α
(n)
i β

(n)
ij p(r|t = i, b = j)

(12)

The posterior probability p(r|t = i, b = j) in (11) and (12) is independent of the iteration. In the main paper the
p(r|t = i, b = j) where chosen to be Gaussians which are equidistantly distributed across the transcript t = i.

Without any tying, the group g = k consists of a single transcript t = i and (8) therefore becomes

β
(n+1)
ij =

∑

r p
(n) (t = i, b = j|r)

∑

r p
(n) (t = i|r)

(13)

For global tying, on the other hand, the group consists of all the transcripts within the locus and therefore

p(g = k|r) = 1 (14)

As a result, the update formula (8) becomes

β
(n+1)
j =

1

|R|

∑

r

p(n) (b = j|r) (15)

It is interesting to note, that (15) is similar to the update formula for the relative abundances αi, equation (5).
This is the case, because for global tying the following holds

p(r) =
∑

j

βjp(r|b = j) (16)

which is similar to the superposition

p(r) =
∑

i

αip(r|t = i) (17)

Multi-mapping reads and sequence specific bias

The previous discussion assumes that a fragment r maps uniquely to the genomic reference. If, on the other
hand, fragment r has multiple hits H(r) on the reference, then

p(h|r) =
p(h)

∑

h∈H(r) p(h)
(18)

needs to be taken into account when estimating the parameters of the Mix2 model. Rather than calculating
(18) during parameter estimation p(h|r) is often set to 1/#H(r) [2]. Equation (18) can be extended to cover the
situation of a sequence specific bias. In this case, the probability that a sequence seq(r) within or surrounding
fragment r is generated can be smaller than 1 and the right-hand side of equation (18) needs to be multiplied by
this sequence specific probability, p(generate|seq(r)). The probability p(generate|seq(r)) can, for instance, be
estimated as in [4] by calculating the ratio of the probability of the sequence seq(r) under the biased model to the
uniform model. Most commonly, seq(r) is a sequence directly preceding or following r and p(generate|seq(r))
therefore reflects the probability that a primer with start sequence seq(r) anneals to the sample. Details on how
equation (18) and its generalization to a sequence specific bias fits into the parameter estimation of the Mix2

model are given in Section ”Parameter estimation”. It should be noted that in our current implementation of
the Mix2 model we do not take sequence specific bias into consideration, nor do we use (18) to calculate the
posterior probability of a hit.

If fragment r has multiple hits H(r) and a sequence specific bias then

p(t = i, b = j|r) =
∑

h∈H(r)

p(t = i, b = j|h)p(h|r) (19)

and the update formula for βkj , equation (8), becomes

β
(n+1)
kj =

∑

r∈R

∑

h∈H(r) p
(n)(g = k, b = j|h)p(h|r)

∑

r∈R

∑

h∈H(r) p
(n)(g = k|h)p(h|r)

. (20)

Here p(h|r) is given by equation (18) or the right-hand side of equation (18) multiplied by p(generate|seq(r))
the probability of generating the sequence seq(r), which is either part of or surrounding fragment r.
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1.2 Identifiability and uniqueness of maximum likelihood solution

The Mix2 model is identifiable on the set of fragments R iff the mapping θ → pθ(R) is injective, where, as in
the previous section, θ is the vector of pairs of parameters

θ = ((ai, bi,j))i=1,...,N∧j=1,...,M (21)

The mapping θ → pθ(R) is given by the product of two mappings

pθ(R) = A ·M · θ (22)

where A is the linear map given by

A = (ar,(i,j))r∈R∧(i,j)∈(1,...,N)×(1...,M) (23)

with
ar,(i,j) = p(r|t = i, b = j) (24)

which is the value of the j-th Gaussian of transcript i for fragment r. Hence r is an index for the rows and the
pair (i, j) is an index for the columns of A. The second mapping in (22) is componentwise multiplication of θ
given by

M(θ) → ((aibi,j))i=1,...,N∧j=1,...,M (25)

The mapping M is invertible on the parameters θ since

∑

j

αiβij = αi (26)

and thus equation (22) is injective iff A is injective on the set Mθ, which is the NM − 1 simplex ∆NM−1. This
condition can be checked by first checking the stronger condition of injectivity of A on the full linear space
R

N×M . If A is injective on R
N×M then, clearly, A is injective on ∆NM−1. If, on the other hand, A is not

injective on R
N×M then it is necessary to check whether differences of elements in ∆NM−1 other than 0 lie in

the kernel of A on R
N×M . The latter will be the case if the dimension of the kernel of A is greater than 1, since

then
dim (ker(A)) + dim

(

∆NM−1
)

> dim
(

R
N×M

)

(27)

The dimension of the kernel of A is, for instance, greater than 1 if two transcripts t = i and t = i′ share the
same Gaussian b = j and b = j′, which happens only if the transcripts have the same length and their exons are
properly aligned. This situation can be avoided by shifting the Gaussians p(r|t = i, b = j), p(r|t = i′, b = j′)
away from each other, which ensures that

p(r|t = i, b = j) 6= p(r|t = i′, b = j′) (28)

and removes therefore identical columns in A. Shifting the Gaussians means that some of them are not equidis-
tantly distributed along a transcript but has otherwise a minor effect on the properties of the Mix2 model.
Summarizing, we state the following

Proposition 1. A sufficient condition for the identifiability of the Mix2 model is the injectivity on R
N×M of

the matrix A in equations (23) and (24). If the Mix2 model fails to be identifiable because two transcripts t = i
and t = i′ share one Gaussian for two of their mixture components b = j and b = j′, then the Mix2 model can
be made identifiable by shifting the Gaussians p(r|t = i, b = j), p(r|t = i′, b = j′) away from each other.

Equation (26) shows further that the Mix2 model is equivalent to a mixture model of the distributions
p(r|t = i, b = j) with mixture weights cij if no Gaussian is shared between two transcripts. In this case, the
maximum likelihood solution for the cij is unique, since the log likelihood surface of mixture models is concave
[3], and the cij and the parameters of the Mix2 model stand in a one-to-one relationship. This can be summarized
as follows.

Proposition 2. The Mix2 model is equivalent to a mixture of the distributions p(r|t = i, b = j) with respective
mixture weights cij if no two transcripts share the same Gaussian. Since the log likelihood function for a mixture
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is concave there exists a unique maximum likelihood solution for the cij to which the EM algorithm converges.
The αi and βij of the Mix2 model can be derived, in this case, from the cij as follows.

αi =

M
∑

j=1

cij (29)

βij =
cij
αi

(30)
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2 Fragment start distributions in Cufflinks

The Mix2 model in the main paper factorizes the transcript specific fragment distribution p(r|t = i) as follows

p(r|t = i) = p(s(r)|t = i)p(l(r)|s(r), t = i) (31)

where s(r) and l(r) are the start and length of fragment r. Cufflinks [5], on the other hand, reverses the order
of s(r) and l(r) in (31) and factorizes p(r|t = i) according to

p(r|t = i) = p(l(r)|t = i)p(s(r)|l(r), t = i) (32)

The fragment length distribution p(l(r)|t = i) in (32) is derived from the cumulative distribution of fragment
lengths p(l(r)) for the complete data set. For this purpose, p(l(r)) is truncated to the possible fragment lengths
for transcript t = i and subsequently renormalized such that

l(t=i)
∑

l=1

p(l|t = i) = 1 (33)

where l(t = i) is the length of transcript t = i. The fragment start distribution p(s(r)|l(r), t = i), on the other
hand, is assumed to be uniform over the possible fragment starts s(r) for transcript t = i and fragment length
l(r), i.e.

p(s(r)|l(r), t = i) =
1

l(t = i)− l(r) + 1
(34)

The fragment start distribution p(s(r)|t = i) for t = i according to the Cufflinks model can be derived by
summing l(r) out of (32). In the absence of fragment length information, e.g. for single-end RNA-Seq data,
Cufflinks assumes by default a Gaussian with mean 200 and standard deviation 80 for the cumulative fragment
length distribution p(l(r)). For this default setting the fragment start distribution p(s(r)|t = i) is given in Figure
2 (a) of the main article for transcripts with length between 400 bps and 3000 bps. It can be seen that for long
transcripts the Gaussian distribution p(l(r)) produces a short and steep tail at the end of p(s(r)|t = i), whereas
this tail shifts increasingly to the 5’ end of the transcript for shorter transcripts. The assumption of a Gaussian
with mean 200 and standard deviation 80 corresponds to a size selection of the fragments prior to sequencing.
Thus, Figure 2 (a) in the main text shows that even for a uniform fragment distribution, size selection generates
a transcript length specific bias.
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